
INTRODUCTION

Beside the ease of handling and complete control over 
working time of light-cured resin composites, problems 
related to polymerization shrinkage and depth of cure 
have been implicated in causing unfavorable outcomes 
for restorations. Due to light absorption and scattering 
phenomena, resin composites may be polymerized to a 
limited depth. In many previous studies, a maximum 
thickness of 2 mm has been suggested for an adequate 
resin polymerization1-3). However, this procedure is 
clinically time consuming and has certain disadvantages, 
such as the possibility of contamination, failures in 
bonding between resin composite layers, and void 
formation4). To overcome these problems, new types of 
resin composites with the possibility of being cured in 
increment thicknesses up to 4, 5 and 6 mm have been 
introduced to the dental market as “bulk-fill” resins. 
This new group of material has been developed based 
on more translucent formulations, having alternative 
resins and initiators5-6) and different filler technologies7). 
However, obtaining sufficient degree of conversion (DC) 
at all depths8) may still be a challenge for these bulk fill 
resin composites. As mentioned above, the efficiency of 
the curing light decreases by absorption and scattering 
at increasing depth of resin composite materials9). Also, 
the type of the light curing unit used10), the translucency 
of the material11), the type and shade of the resin 
composite12-14), the distance of the light guide tip and 
the exposure time15) are all factors that affect the overall 
light transmission through the resin composite. Higher 
DC values typically result in higher hardness, elastic 

modulus, and color stability of the resin composites. 
Moreover, the solubility, the water sorption16) and 
the biocompatibility17) of the resin material are also  
positively affected.

When curing a resin composite restoration, the 
critical issue is the total radiant energy received by the 
resin (J/cm2)18). If a resin composite does not receive 
enough photons, the polymerization of the material will  
be inadequate. This situation becomes important 
especially at the bottom of the restorations. Delivery 
of adequate irradiance (mW/cm2) at the correct 
wavelengths for an appropriate period of time and from 
a suitable position is required to optimize curing results. 
It is especially important to measure this light delivery 
at the deepest regions of the restoration in order to 
confirm that stated depths of cure beyond 2 mm for new 
materials are truly achievable.

The DC can be measured by microhardness tests, 
Fourier Transform Infrared Spectrometer (FTIR), 
microscopy and scraping techniques. The basis of 
microhardness measurements depend on the idea of 
‘resistance to the deformation’19). The deformation 
is usually made by a pyramidal diamond shaped 
indentor and the indentation depth is measured with 
a microscope. This is one of the most common method 
used to evaluate the effectiveness of the polymerization 
of light-cured materials today. Further, the assessment 
of bottom/top surface hardness ratio has conventionally 
been used to evaluate depth of cure, or light cure 
effectiveness. The threshold value of 0.8 has been used 
as a criteria for adequate polymerization for light cured 
resin composites20,21) though there the actual clinical 
relevance of this value is not known.

The aims of this study were: (1) to measure the 
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Table 1	 Resin composites used (information acquired from manufacturers)

Material Code Type

Maximum 
applicable 
thickness 

(mm)

Composition
Filler 
(%wt)

Manufacturer

Aura AU

Bulk Fill 
Restorative 
Material

6
UDMA, Bis-EMA, Bis-GMA, Amorphous 
SiO2, Barium aluminasilicate glass, 
prepolymerized filler

81
SDI,  
Bayswater, 
Australia

Filtek Bulk  
Fill Posterior

FBP 5
AUDMA, UDMA, DDDMA, zirconia/silica, 
ytterbium trifluoride

76.5
3M ESPE, 
Seefeld, 
Germany

SonicFill SF 5

Ethoxylated bisphenol A dimethacrylate, 
bisphenol-A-dimethacrylate, 
triethyleneglycol dimethacrylate, 
barium glass, silicon dioxide

83.5
Kerr,  
Orange,  
USA

X-tra Fill XF 4
Inorganic fillers in a methacrylate matrix, 
Bis-GMA, UDMA, TEGDMA

83.5
Voco,  
Cuxhaven, 
Germany

Tetric  
EvoCeram  
Bulk Fill

TEC 4

Bis-GMA, Bis-EMA, UDMA, barium glass, 
ytterbium trifluoride, mixed oxideand 
prepolymer, additives, catalysts, 
stabilizers, pigments

81

Ivoclar  
Vivadent, 
Schaan, 
Liechtenstein

Admira  
Fusion X-tra

AD 4
Ormocer resin, CQ, amine, BHT, SiO2 
nano particles, glass ceramics

84 Voco

Filtek Bulk  
Fill Flowable

FBF

Bulk Fill  
Base 
Material

4
Bis-GMA, UDMA, Bis-EMA, procrylat 
resin, ytterbium trifluoride, zirconia/silica

64.5 3M ESPE

SDR SDR 4

Ba-Al-F-B silicate glass, Sr-Al-F silicate 
glass, modified UDMA, EBPADMA, 
TEGDMA, camphorquinone, 
photoaccelerator, BHT, UV stabilizer, 
titanium dioxide, iron oxide pigments, 
fluorescing agent

68

Dentsply, 
DeTrey, 
Konstanz 
Germany

X-tra Base XB 4
Inorganic fillers in a methacrylate matrix
(aliphatic dimethacrylate)

75 Voco

Venus Bulk  
Fill

VB 4
Multifunctional methacrylate monomers 
(UDMA, EBADMA), Ba-Al-F silicate 
glass, YbF3, SiO2

65

Heraeus 
Kulzer, 
Hanau, 
Germany

Z100 Z100
Conventional
composite

2 Bis-GMA, TEGDMA, silica/zirconia 71 3M ESPE

radiant energy transferred to the bottom level of six 
bulk-fill restorative resin composites and four bulk-
fill resins used as base material in comparison to one 
conventional resin composite; (2) to compare the top 
and bottom microhardnesses of the same materials 
to confirm that they could achieve their stated depth 
of cure and (3) to evaluate the correlation between 
microhardness and radiant energy. The study tested 
the following hypothesis: (1) While the material gets 
thicker, the radiant energy decreases at the bottom 
level of the material; (2) There is no difference between 
the top and the bottom microhardness of the materials 
tested; (3) There is no difference between the bottom 

level microhardness of each group; (4) Higher radiant 
energy increases the bottom microhardness of the resin 
composites and (5) All materials exceed the threshold 
value of 0.8 after polymerization.

MATERIALS AND METHODS

Commercially available six bulk-fill restorative resin 
composites, four bulk-fill base resin composites and 
one conventional resin composite, all of the same shade 
designation, were tested. The recommended thicknesses, 
filler loads, compositions, and manufacturers are 
presented in Table 1.
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Table 2	 Mean radiant energy, standard deviations and p values of all groups at the bottom (p≤0.05)

Material mm Mean Radiant Energy (J/cm2) ±SD p

AU

2
4
5
6

5.04
1.32
0.9
0.56

0.320
0.192
0.07
0.054

2 mm>4 mm: p=0.000
2 mm>5 mm: p=0.000
2 mm>6 mm: p=0.000
4 mm>5 mm: p=0.008
4 mm>6 mm: p=0.000
5 mm>6 mm: p=0.003

FBP
2
4
5

5.44
1.84
1.02

0.371
0.207
0.13

2 mm>4 mm: p=0.000
2 mm>5 mm: p=0.000
4 mm>5 mm: p=0.001

SF
2
4
5

3.3
0.76
0.4

0.254
0.054
0.00

2 mm>4 mm: p=0.000
2 mm>5 mm: p=0.000
4 mm>5 mm: p=0.000

XF
2
4

5.88
2.2

0.268
0.158

2 mm>4 mm: p=0.000

TEC
2
4

5.88
2.2

0.334
0.122

2 mm>4 mm: p=0.000

AD
2
4

5.46
1.98

0.427
0.13

2 mm>4 mm: p=0.000

FBF
2
4

4.8
1.98

0.886
0.13

2 mm>4 mm: p=0.001

SDR
2
4

7.74
3.4

0.456
0.264

2 mm>4 mm: p=0.000

XB
2
4

8.94
4.5

0.23
0.339

2 mm>4 mm: p=0.000

VB
2
4

9.74
5.34

0.167
0.194

2 mm>4 mm: p=0.000

Z100 2 4.4 0.452 —

The samples were prepared in accordance to the 
manufacturer’s claim for curing depth for each resin 
composite material tested. For this reason, some of the 
materials used in the study like Aura, SonicFill and 
Filtek BulkFill Posterior are polymerized up to 5 or even 
6 mm as claimed by their manufacturer’s. For sample 
preparation, Delrin discs of 6 mm diameter and 1, 2 or 
3 mm depth were stacked where needed to produce final 
depths of 2, 4, 5 and 6 mm. Five samples were prepared 
for each thickness group. A transparent Mylar strip was 
placed on the bottom of the molds, which were filled with 
the resin composite, and then a second Mylar strip and 
a glass slide were used to squeeze out the excess of the 
materials from the top.

Samples of each resin composite were placed over 
the bottom sensor of a visible light spectrophotometer 
(Marc Resin Calibrator, BlueLight Analytics, Halifax, 
Canada) and photo-polymerized for 20 s using an LED  
curing unit (SmartLite Focus, Dentsply, Milford, DE, 
USA) under standard curing mode with an output 
wavelength range of 460–490 nm. The light guide tip was 
positioned 1 mm above the samples. Irradiance at the 
bottom of the resin composites were recorded during the 

curing procedures and multiplied by time to determine 
the total radiant energy.

After curing, all the samples were stored in distilled 
water at 37oC for 24 h prior to Knoop microhardness 
measurements. For each material, microhardness was 
measured three times on the top and bottom of the cured 
samples in different locations using a Knoop diamond 
pyramid (Struers Duramin, Struers, Ballerup, Denmark) 
with a 100 g (0.98 N) load and 20 s of indentation time. 
The average of the microhardness values for the top 
and the bottom measurements was calculated and the 
bottom/top ratios in percentage were calculated.

Data were reported as Mean±SD. Paired sample 
t-test was used to compare two related means. The 
correlation analysis was used to determine whether 
or not two variables were correlated. SPSS version-15 
(Statistical Package for the Social Sciences, SPSS, 
Chicago, IL, USA) was used to perform all statistical 
analyses (p≤0.05).

RESULTS

The mean radiant energy at the specimen bottoms of 
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Table 3	 The mean microhardness values and comparison of top and bottom microhardness for every thickness in each group 
(p≤0.05)

Material mm
Mean Microhardness

±SD p
N/mm2 Kg/mm2

AU

2T
2B
4T
4B
5T
5B
6T
6B

362.06
339.89
360.49
338.32
357.35
272.82
350.88
243

36.92
34.66
36.76
34.5
36.44
27.82
35.78
24.78

1.061
2.136
1.718
0.484
1.844
1.19
0.759
0.349

2T=2B: p=0.137

4T>4B: p=0.045

5T>5B: p=0.001

6T>6B: p=0.000

FBP

2T
2B
4T
4B
5T
5B

526.02
452.67
524.06
426.39
531.12
407.76

53.64
46.16
53.44
43.48
54.16
41.58

1.15
0.676
1.089
1.184
1.137
0.511

2T>2B: p=0.001

4T>4B: p=0.000

5T>5B: p=0.000

SF

2T
2B
4T
4B
5T
5B

941.83
822.97
947.71
703.33
923.19
582.31

96.04
83.92
96.64
71.72
94.14
59.38

1.993
0.58
2.89
2.025
1.099
0.746

2T>2B: p=0.000

4T>4B: p=0.000

5T>5B: p=0.000

XF

2T
2B
4T
4B

737.46
723.92
714.9
705.88

75.2
73.82
72.9
71.98

0.946
1.868
1.159
1.273

2T=2B: p=0.161

4T=4B: p=0.206

TEC

2T
2B
4T
4B

632.72
581.73
635.86
469.54

64.52
59.32
64.84
47.88

1.023
2.053
0.835
0.712

2T>2B: p=0.003

4T>4B: p=0.000

AD

2T
2B
4T
4B

623.7
556.42
624.09
454.04

63.6
56.74
63.64
46.3

0.452
0.82
0.702
0.418

2T>2B: p=0.000

4T>4B: p=0.000

FBF

2T
2B
4T
4B

320.48
276.93
316.95
252.22

32.68
28.24
32.32
25.72

1.874
1.372
1.227
2.328

2T>2B: p=0.000

4T>4B: p=0.002

SDR

2T
2B
4T
4B

314.79
283.6
314.59
283.8

32.1
28.92
32.08
28.94

1.668
2.206
1.336
3.219

2T=2B: p=0.115

4T=4B: p=0.090

XB

2T
2B
4T
4B

407.95
373.43
392.85
352.05

41.6
38.08
40.6
35.9

2.498
0.715
1.218
1.816

2T=2B: p=0.051

4T>4B: p=0.005

VB

2T
2B
4T
4B

406.77
384.22
405.79
329.89

41.48
39.18
41.38
33.64

1.158
0.311
0.84
0.32

2T>2B: p=0.006

4T>4B: p=0.000

Z100
2T
2B

1062.06
1015.77

108.3
103.58

2.486
1.037

2T>2B: p=0.017
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Table 4	 Comparison of bottom microhardness in each group. (Each group was evaluated separately within itself) (p≤0.05)

Material mm
Mean Bottom Microhardness

±SD p
(N/mm2) (Kg/mm2)

AU

2
4
5
6

339.89
338.32
272.82
243

34.66
34.5
27.82
24.78

2.136
0.484
1.19
0.349

2 mm=4 mm: p=0.859
2 mm>5 mm: p=0.002
2 mm>6 mm: p=0.001
4 mm>5 mm: p=0.000
4 mm>6 mm: p=0.000
5 mm>6 mm: p=0.009

FBP
2
4
5

452.67
426.39
407.76

46.16
43.48
41.58

0.676
1.184
0.511

2 mm>4 mm: p=0.014
2 mm>5 mm: p=0.001
4 mm>5 mm: p=0.031

SF
2
4
5

822.97
703.33
582.31

83.92
71.72
59.38

0.259
0.905
0.333

2 mm>4 mm: p=0.000
2 mm>5 mm: p=0.000
4 mm>5 mm: p=0.000

XF
2
4

723.92
705.88

73.82
71.98

1.868
1.273

2 mm=4 mm: p=0.113

TEC
2
4

581.73
469.54

59.32
47.88

2.053
0.712

2 mm>4 mm: p=0.001

AD
2
4

556.42
454.04

56.74
46.3

0.82
0.418

2 mm>4 mm: p=0.000

FBF
2
4

276.93
252.22

28.24
25.72

1.372
2.328

2 mm=4 mm: p=0.065

SDR
2
4

283.6
283.8

28.92
28.94

2.206
3.219

2 mm=4 mm: p=0.992

XB
2
4

373.43
352.05

38.08
35.9

0.715
1.816

2 mm=4 mm: p=0.071

VB
2
4

384.22
329.89

39.18
33.64

0.311
0.32

2 mm>4 mm: p=0.000

Z100 2 1015.77 103.58 1.037 —

all groups are shown in Table 2. In bulk-fill restorative  
resins groups; XF (5.88±0.268 J/cm2) and TEC 
(5.88±0.334 J/cm2) and in bulk-fill base resins; VB group 
(9.74±0.167 J/cm2) showed the maximum energy transfer 
to the bottom level at 2 mm while the control group’s 
energy transfer was 4.40±0.452 J/cm2. In all groups, the 
bottom level radiant energy decreased significantly with 
increasing material thicknesses (p≤0.05).

The mean microhardness values and comparison 
of top and bottom hardness of all groups are shown 
in Table 3. For groups AU 2 mm, XF 2 mm and 4 mm 
from the bulk-fill restorative resins; SDR 2 mm and 
4 mm and XB 2 mm from the bulk-fill base resins, no 
significant difference was found between the top and 
the bottom microhardnesses. For the other groups, top 
microhardness values were higher than the bottom 
microhardness (p≤0.05).

The comparison of bottom microhardness values of 
each groups are shown in Table 4. For the bottom values 
of AU and XF groups from bulk-fill restorative resins, 
FBF, SDR and XB groups from bulk-fill base resins, no 

statistically significant difference was found between 
the microhardness’s of 2 and 4 mm thicknesses. For the 
remaining groups, increasing the material thickness 
was found to have a significant negative effect on the 
bottom microhardness of the materials (p≤0.05).

The correlation of radiant energy and microhardness 
for all groups are shown in Table 5. For XF, TEC, 
FBF and Z100 groups, increase in the radiant energy 
affected positively the microhardness (p≤0.05). There 
was no correlation between the radiant energy and the 
microhardness for the other groups.

The bottom/top ratios in percentage of all groups 
are shown in Fig. 1. All of the four bulk-fill base resins 
(FBF, SDR, XB and VB) showed microhardness at 4 mm 
equal or exceeding the 80% threshold. For the bulk fill 
restoratives, only AU, FBP and XF materials exceeded 
the 80% threshold value, though the others were within 
10%. None of the materials claiming greater than 4 mm 
depth of cure could met the threshold value, although 
FBP was very close.
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Table 5	 Correlation between radiant energy and microhardness at the bottom of the samples for each resin composite group 
(p≤0.05)

Material

AU FBF SF XF TEC AD FBF SDR XB VB Z100

p 0.798 0.377 0.209 0.016 0.030 0.086 0.048 0.372 0.156 0.117 0.044

r 0.160 0.512 0.677 0.942* 0.914* 0.825 0.882* 0.518 0.737 0.783 0.889*

Fig. 1	 The bottom-top microhardness ratios as a percentage for the evaluated 
resin composite groups.

DISCUSSION

In this study, six bulk-fill restorative resin composites, 
four bulk-fill resins used as base materials, and one 
conventional resin composite were evaluated in terms of 
light transfer through the material to the bottom layer 
during light curing. In general, though not always, the 
materials met the manufacturer’s claims for depth of 
cure, and there was a reasonable correlation between 
higher radiant energy at the base of the material and 
higher microhardness values.

In previous studies, it has been reported that 
increasing resin composite thickness reduced the 
transmission of the polymerizing light22,23). In the  
current study, the radiant energy measured at the bottom 
of the samples was shown to decline with thickness, 
consistent with these previous studies. This was true 
for all materials, even those designed to provide deeper 
cure, i.e. bulk fills.

During application of bulk-fill resins in deep  
cavities, increasing irradiation time period or using 
a higher power light source would be useful in order 
to deliver enough energy to the bottom layers of the 
restoration24). However, there is still no consensus 
about the absolute energy value necessary to obtain an 
optimum polymerization for every resin composite. This 
value depends on the translucency, type and shade of the 
resin composite, as well as the type of photoinitiator25). 
Furthermore, the filler type used in the resin composite 
is one of the most important factors affecting light 
penetration through the material. Higher filler loading, 

especially with smaller particles, results in a greater 
number of resin matrix/filler particle interfaces that 
leads to increased light scattering because of the 
difference in refractive indices between the filler and 
the matrix resin26). The absorption of the light by the 
photo initiators and the pigments present in the resin 
composites also decreases the energy transferred to the 
bottom level of the restoration27).

It has been reported that after light curing, the 
polymerization of resin composites continues for up to 
24 h28,29). Therefore, microhardness measurements are 
usually performed after that time. Accordingly, in our 
study microhardness measurements were performed 
after 24 h’s post-curing. It was expected that differences 
existing directly after curing would still be present 
when testing after 24 h, because Price et al.12) found that 
insufficient light activation could not be compensated 
by waiting 24 h at 37oC. However, in their study, 
microhardness was not measured after 24 h. In our  
study, the surfaces were not polished before testing 
because the thickness of the samples made them difficult 
to handle. Moreover, avoiding polishing, ensured that 
the potential heat generated during polishing that may 
cause an increase in polymerization was also avoided. 
Though a study by Park et al.30) found no significant 
difference in microhardness for polished surfaces and 
those cured against a Mylar strip, at least after six 
days.

DC is generally evaluated indirectly with 
microhardness tests31). In one study, direct  
measurement of the residual unreacted carbon double 
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bonds by FTIR was found to be less sensitive than 
microhardness assessments in detecting small changes 
in cure32). Also Knoop microhardness correlates well 
with the DC of the restorative resins33). Therefore, the 
evaluation of DC was estimated by Knoop microhardness 
in our study.

In previous studies, it has been shown that bottom 
surface microhardness levels were lower than those at 
the top surface in all specimens, regardless of the curing 
light used34,35). In this study, most of the composites did 
show reduced microhardness at the bottom of the 4 mm 
specimens compared to the 2 mm specimens, except 
for XF and AU from bulk-fill restorative resin groups 
and SDR, XB and FBF from the bulk-fill base resin 
groups. However, it should be noted that although the 
microhardness for all of the other composites showed 
a reduction at 4 mm vs. 2 mm, these composites were 
still as hard or harder at 4 mm than AU, FBF, SDR and 
XB. This suggests that these materials may still have 
clinically acceptable microhardness at greater depth, 
even though they showed this decline.

In a study of Flury et al.36), a conventional 
resin composite and a bulk-fill restorative resin 
(Tetric EvoCeram) showed a significant decrease 
in microhardness at the bottom of specimens with 
increasing thickness, but certain bulk-fill base resins 
(SDR, Filtek BulkFill) remained the same. In the 
current study, similar findings were obtained. In groups 
AU and XF from the bulk-fill restorative resins, and in 
groups FBF, SDR and XB from the bulk-fill base resins, 
no significant difference was found between the bottom 
of 2 and 4 mm thick samples. For the other groups, 
increasing increment thickness reduced the bottom level 
microhardness.

While the depth of cure is influenced by many 
factors, such as the chemical structure of the monomers, 
filler composition, curing time and light intensity37), 
in this study, standard conditions were provided for 
curing time and light intensity, and each group was 
evaluated within itself so chemical structure and filler  
compositions were also constant parameters. As 
mentioned above, in all groups, increasing increment 
thicknesses reduced the energy transferred to the 
bottom level of the samples. Thus, despite the reduced 
energy delivered to the bottom of the specimens, certain 
materials still cured sufficiently to show a consistent 
microhardness throughout their depth, as claimed by 
the manufacturers.

At the bottom of XF, TEC, FBF and Z100, a positive 
correlation between radiant energy and microhardness 
was found. In previous studies, a linear relationship 
between microhardness and the logarithm of energy 
received by resin composites38,39), and an exponential 
relationship between DC and radiant energy29) have 
been reported. The possible reason that certain  
materials showed this correlation and others did not is 
not obvious, but is most likely related to compositional 
differences.

In many studies, it was shown that the minimum 
value suggested for an effective light curing procedure 

based on bottom to top hardness ratio was 0.821,40,41). 
In this study, AU, FBP, and XF from the bulk-fill 
restorative resin group and all of the bulk-fill base resin 
groups exceeded this threshold value at 4 mm thickness. 
The reason for this is likely due to the higher light 
transmittance within these specific resin composites. 
However, AU, FBP and SF claim depths of cure 
exceeding 4 mm, though this was not achieved in this 
study. It is possible that curing with a light of higher 
power would have allowed these materials to exceed  
their own claims and further studies need to be performed 
to evaluate these claims.

Nowadays, bulk-fill resins are often preferred 
because of their clinical ease of use and time savings 
properties. According to the results of this study, it was 
shown that some bulk-fill resins, and especially those 
used as base materials, can be used safely in clinical 
situations in terms of microhardness and DC. We believe 
that further studies performed with high power lights 
will give more insight into these materials.

CONCLUSIONS

Within the limitations of this study, the following 
conclusions may be drawn:

1.	 Increasing the thickness of the resin composite 
material reduced the energy delivered to the 
bottom in all groups.

2.	 XF and SDR resin composites showed no 
differences in the comparison of top and bottom 
microhardnesses.

3.	 In groups AU, XF, FBF, SDR and XB, no significant 
difference was found between the microhardness 
values of 2 and 4 mm thicknesses.

4.	 A positive correlation between the radiant energy 
and the microhardness at the bottom levels was 
found in XF, TEC, FBF and Z100 groups.

5.	 XF, FBF, SDR, XB and VB groups exceeded the 
threshold value for bottom to top hardness ratio of 
0.8 at 4 mm, however the three resin composites 
claiming depth of cure exceeding 4 mm did not 
meet the threshold.
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